A durable superwetting clusters-inlayed mesh with high efficiency and flux for emulsion separation

J Hazard Mater. 2021 Feb 5:403:123620. doi: 10.1016/j.jhazmat.2020.123620. Epub 2020 Aug 9.

Abstract

How to rapidly and efficiently separate surfactant-stabilized emulsions has been a great challenge for oil/water separation materials. In this work, a durable superwetting copper mesh with high efficiency and flux for gravity-driven emulsion separation was fabricated by subtly inlaying polydopamine/polyethyleneimine@aminated carbon nanotubes (PDA/PEI@CNTs-NH2) clusters in the mesh pores. The porous clusters with abundant cationic groups render the mesh with superwettability, submicron permeation channels and positive charges, so as to achieve strong demulsification ability. Based on the superwettability and the strong demulsification ability, the PDA/PEI@CNTs-NH2 clusters-inlayed copper mesh (PPC-CM) exhibited high separation efficiency of over 99.5% for various anionic surfactant-stabilized oil-in-water emulsions. Meanwhile, the permeation flux of PPC-CM solely driven by gravity is as high as 3946.3 L m-2 h-1. The strong demulsification ability and high permeation flux of the superwetting mesh are due to the synergistic action of charge-screening effect of -NH3+ and size-sieving effect of optimized pore size. Furthermore, the resultant mesh exhibited excellent durability that it could resist serious physical abrasion and chemical corrosion. Especially the mesh after repeated separation can recover its positive charge by a simple acid treatment. These excellent performances highlight the superwetting mesh a promising potential for sustainable separation of highly stabilized oil/water emulsions.

Keywords: Aminated carbon nanotubes; Demulsification; Oil/water emulsion separation; Superwetting mesh.