Extract of the Aerial Part of Polygala tenuifolia Attenuates d-Galactose/NaNO2-induced Learning and Memory Impairment in Mice

Planta Med. 2020 Dec;86(18):1389-1399. doi: 10.1055/a-1212-3212. Epub 2020 Aug 14.

Abstract

Alzheimer's disease, one of the most common types of age-related dementia, is characterized by memory deterioration and behavior disorder. The aboveground part of Polygala tenuifolia is a traditional Chinese medicine used for the treatment of amnesia. This study was conducted to investigate the ameliorating effect of the aerial part of P. tenuifolia on d-galactose/NaNO2-induced learning and memory impairment in mice. d-galactose (120 mg/kg) and NaNO2 (90 mg/kg) were injected intraperitoneally for 60 days to induce learning and memory impairment in mice. The aerial part of P. tenuifolia (25, 50, and 100 mg/kg) and piracetam (200 mg/kg) were simultaneously administered orally on days 15 - 60. Results of this study showed that aerial part of P. tenuifolia significantly decreased the latency time and increased the number of platform crossings in the Morris water maze compared with the Model group. Moreover, the aerial part of P. tenuifolia significantly increased the latency time and decreased the error frequency in the step-down and step-through tests compared with the Model group. Meanwhile, the aerial part of P. tenuifolia was able to regulate the cholinergic system by increasing the levels of ACh and ChAT and decreasing the level of AChe. The aerial part of P. tenuifolia also significantly attenuated the levels of interleukin-1 beta and malonaldehyde and enhanced the interleukin-10 and glutathione levels and superoxide dismutase activity. Furthermore, treatment with aerial part of P. tenuifolia increased the protein and mRNA expression of brain-derived neurotrophic factor and tropomyosin receptor kinase B in the hippocampus. These results suggest that the aerial part of P. tenuifolia can ameliorate learning and memory impairments by modulating cholinergic activity, inhibiting neuroinflammation and oxidative stress, and regulating the brain-derived neurotrophic factor and tropomyosin receptor kinase B signaling pathway.

MeSH terms

  • Animals
  • Galactose
  • Hippocampus
  • Maze Learning
  • Memory
  • Memory Disorders / chemically induced
  • Memory Disorders / drug therapy
  • Mice
  • Plant Components, Aerial
  • Plant Extracts / pharmacology
  • Polygala*

Substances

  • Plant Extracts
  • Galactose