On-chip high-efficiency wavelength multicasting of PAM3/PAM4 signals using low-loss AlGaAs-on-insulator nanowaveguides

Opt Lett. 2020 Aug 15;45(16):4539-4542. doi: 10.1364/OL.398777.

Abstract

Nonlinear optics-based optical signal processing (OSP) could potentially increase network flexibility because of its transparency, tunability, and large bandwidth. A low-loss, high nonlinearity, and compact integrated material platform is always the pursuit of OSP. In this Letter, a high-efficiency, one-to-six wavelength multicasting of 10 Gbaud pulse-amplitude modulation (PAM3/PAM4) signals using a 6 cm long Al0.2Ga0.8As-on-insulator nanowaveguide is experimentally demonstrated for the first time, to the best of our knowledge. The low-loss, combined with the high nonlinear coefficient of the AlGaAsOI platform, enables us to achieve -11.2dB average conversion efficiency clear eye diagrams and <2.1dB power penalty at KP4-forward error correction threshold (2.4×10-4) for all the output PAM3/PAM4 multicasting channels. This result points to a new generation of nonlinear OSP photonic integrated circuits.