Subwavelength broadband sound absorber based on a composite metasurface

Sci Rep. 2020 Aug 14;10(1):13823. doi: 10.1038/s41598-020-70714-7.

Abstract

Suppressing broadband low-frequency sound has great scientific and engineering significance. However, normal porous acoustic materials backed by a rigid wall cannot really play its deserved role on low-frequency sound absorption. Here, we demonstrate that an ultrathin sponge coating can achieve high-efficiency absorptions if backed by a metasurface with moderate surface impedance. Such a metasurface is constructed in a wide frequency range by integrating three types of coiled space resonators. By coupling an ultrathin sponge coating with the designed metasurface, a deep-subwavelength broadband absorber with high absorptivity ([Formula: see text]) exceeding one octave from 185 Hz to 385 Hz (with wavelength [Formula: see text] from 17.7 to 8.5 times of thickness of the absorber) has been demonstrated theoretically and experimentally. The construction mechanism is analyzed via coupled mode theory. The study provides a practical way in constructing broadband low-frequency sound absorber.