Exploring the mechanisms of cell reprogramming and transdifferentiation via intercellular communication

Phys Rev E. 2020 Jul;102(1-1):012406. doi: 10.1103/PhysRevE.102.012406.

Abstract

In the past years, the mechanisms of cell reprogramming and transdifferentiation via the way of gene regulation, stochastic fluctuations, or chemical induction to realize cell type transitions from the perspectives of single cells were explored. In multicellular organisms, intercellular communication plays crucial roles in cell fate decisions. However, the importance of intercellular communication to the processes of cell reprogramming and transdifferentiation is often neglected. In this paper, the mechanisms of cell reprogramming and transdifferentiation by intercellular communication are investigated. A two-gene circuit with mutual inhibition and self-activation as a basic model is selected. Then, a coupling mechanism via intercellular communication by introducing a specific signaling molecule into the gene circuit is considered. Finally, the influence of coupling intensity on the dynamics of the coupled system of two cells is analyzed. Moreover, when the coupling intensity changes with respect to the cell number in a discrete way, the effects of coupling intensity on cell reprogramming and transdifferentiation are discussed. Some theoretical analysis of stability and bifurcation of the systems are also given. Our research shows that cells can realize cell reprogramming and transdifferentiation via intercellular interaction at opportune coupling intensity. These results not only further enrich previous studies but also are beneficial to understand the mechanisms of cell reprogramming and transdifferentiation via intercellular communication in the growth and development of multicellular organisms.

MeSH terms

  • Cell Transdifferentiation*
  • Cellular Reprogramming*
  • Extracellular Space / metabolism*
  • Models, Biological*