Quantum Fluctuations of the Center of Mass and Relative Parameters of Nonlinear Schrödinger Breathers

Phys Rev Lett. 2020 Jul 31;125(5):050405. doi: 10.1103/PhysRevLett.125.050405.

Abstract

We study quantum fluctuations of macroscopic parameters of a nonlinear Schrödinger breather-a nonlinear superposition of two solitons, which can be created by the application of a fourfold quench of the scattering length to the fundamental soliton in a self-attractive quasi-one-dimensional Bose gas. The fluctuations are analyzed in the framework of the Bogoliubov approach in the limit of a large number of atoms N, using two models of the vacuum state: white noise and correlated noise. The latter model, closer to the ab initio setting by construction, leads to a reasonable agreement, within 20% accuracy, with fluctuations of the relative velocity of constituent solitons obtained from the exact Bethe-ansatz results [Phys. Rev. Lett. 119, 220401 (2017)PRLTAO0031-900710.1103/PhysRevLett.119.220401] in the opposite low-N limit (for N≤23). We thus confirm, for macroscopic N, the breather dissociation time to be within the limits of current cold-atom experiments. Fluctuations of soliton masses, phases, and positions are also evaluated and may have experimental implications.