Nonomuraea nitratireducens sp. nov., a new actinobacterium isolated from Suaeda australis Moq. rhizosphere

Int J Syst Evol Microbiol. 2020 Sep;70(9):5026-5031. doi: 10.1099/ijsem.0.004377.

Abstract

A novel actinomycete, designated WYY166T, was isolated from the rhizosphere of Suaeda australis Moq. collected in Dongfang, PR China. The taxonomic position of this strain was investigated using a polyphasic approach. Phylogenetic analysis based on its 16S rRNA gene referred strain WYY166T to the genus Nonomuraea, and it was most closely related to the type strains Nonomuraea candida HMC10T, Nonomuraea turkmeniaca DSM 43926T, Nonomuraea maritima NBRC 106687T and Nonomuraea polychroma DSM 43925T (98.35, 97.60, 97.36 and 97.30% sequence similarity, respectively). Genome sequencing revealed a genome size of 11.27 Mbp and a G+C content of 71.10 mol%. The genome average nucleotide identity (ANI) values and the digital DNA - DNA hybridization (dDDH) values between strain WYY166T and the other species of the genus were found to be low (ANI 81.63~85.23 %, dDDH 23.6~31.6 %), suggesting that it represented a new species. The physiological evaluation showed that it had remarkable nitrate reduction activity. The whole-cell hydrolysates contained meso-diaminopimelic acid and madurose. The N-acyl type of muramic acid was acetyl. The major menaquinones were MK-9 (H4) (86.9 %) and MK-9 (H2) (13.1 %). The predominant fatty acids were iso-C16 : 0 (53.2 %), 10-methyl C17 : 0 (10.7 %), C17 : 1 ω6c (8.3 %) and iso-C16 : 1 h (7.3 %). These physiological, biochemical and chemotaxonomic data suggested that strain WYY166T should be classified as representing a novel species of the genus Nonomuraea, for which the name Nonomuraea nitratireducens sp. nov. is proposed. The type strain is WYY166T (=MCCC 1K03779T=KCTC 49343T).

Keywords: Nonomuraea nitratireducens sp. nov.; actinobacteria; nitrate reduction; polyphasic taxonomy; rhizosphere.

MeSH terms

  • Actinobacteria / classification*
  • Actinobacteria / isolation & purification
  • Bacterial Typing Techniques
  • Base Composition
  • Chenopodiaceae / microbiology*
  • China
  • DNA, Bacterial / genetics
  • Diaminopimelic Acid / chemistry
  • Fatty Acids / chemistry
  • Nucleic Acid Hybridization
  • Phylogeny*
  • RNA, Ribosomal, 16S / genetics
  • Rhizosphere*
  • Sequence Analysis, DNA
  • Soil Microbiology*
  • Vitamin K 2 / analogs & derivatives
  • Vitamin K 2 / chemistry

Substances

  • DNA, Bacterial
  • Fatty Acids
  • RNA, Ribosomal, 16S
  • Vitamin K 2
  • menaquinone 9
  • Diaminopimelic Acid