Nanoscale Dynamic Readout of a Chemical Redox Process Using Radicals Coupled with Nitrogen-Vacancy Centers in Nanodiamonds

ACS Nano. 2020 Oct 27;14(10):12938-12950. doi: 10.1021/acsnano.0c04010. Epub 2020 Aug 19.

Abstract

Biocompatible nanoscale probes for sensitive detection of paramagnetic species and molecules associated with their (bio)chemical transformations would provide a desirable tool for a better understanding of cellular redox processes. Here, we describe an analytical tool based on quantum sensing techniques. We magnetically coupled negatively charged nitrogen-vacancy (NV) centers in nanodiamonds (NDs) with nitroxide radicals present in a bioinert polymer coating of the NDs. We demonstrated that the T1 spin relaxation time of the NV centers is very sensitive to the number of nitroxide radicals, with a resolution down to ∼10 spins per ND (detection of approximately 10-23 mol in a localized volume). The detection is based on T1 shortening upon the radical attachment, and we propose a theoretical model describing this phenomenon. We further show that this colloidally stable, water-soluble system can be used dynamically for spatiotemporal readout of a redox chemical process (oxidation of ascorbic acid) occurring near the ND surface in an aqueous environment under ambient conditions.

Keywords: T1 spin relaxation time; chemical reaction; nanodiamond; nitrogen-vacancy center; quantum sensing; radical.

Publication types

  • Research Support, Non-U.S. Gov't