Key Role of the Surface Band Structure in Spin-Dependent Interfacial Electron Transfer: Ar/Fe(110) and Ar/Co(0001)

J Phys Chem Lett. 2020 Sep 3;11(17):7141-7145. doi: 10.1021/acs.jpclett.0c01946. Epub 2020 Aug 18.

Abstract

The injection of spin-polarized electrons across interfaces is central to many technologies, and hence, it is important to understand the main ingredients controlling it. Here, we demonstrate that the spin dependence of ultrafast electron transfer at Ar/Co(0001) and Ar/Fe(110) interfaces is rooted in the details of the spin-split surface band structures. The injection dynamics are particularly sensitive to the sizes (in reciprocal space) of projected electronic band gaps around Γ̅. Our ab initio calculations back that minority electrons are injected significantly faster than majority electrons in line with recently reported experimental injection times. A simple tunnelling model incorporating the spin-dependent gap sizes confirms that this ingredient is crucial to rationalize the experimental results.