Identification of Immune Regulatory Genes in Apis mellifera through Caffeine Treatment

Insects. 2020 Aug 10;11(8):516. doi: 10.3390/insects11080516.

Abstract

Plants and pollinators are mutually beneficial: plants provide nectar as a food source and in return their pollen is disseminated by pollinators such as honeybees. Some plants secrete chemicals to deter herbivores as a protective measure, among which is caffeine, a naturally occurring, bitter tasting, and pharmacologically active secondary compound. It can be found in low concentrations in the nectars of some plants and as such, when pollinators consume nectar, they also take in small amounts of caffeine. Whilst caffeine has been indicated as an antioxidant in both mammals and insects, the effect on insect immunity is unclear. In the present study, honeybees were treated with caffeine and the expression profiles of genes involved in immune responses were measured to evaluate the influence of caffeine on immunity. In addition, honeybees were infected with deformed wing virus (DWV) to study how caffeine affects their response against pathogens. Our results showed that caffeine can increase the expression of genes involved in immunity and reduce virus copy numbers, indicating that it has the potential to help honeybees fight against viral infection. The present study provides a valuable insight into the mechanism by which honeybees react to biotic stress and how caffeine can serve as a positive contributor, thus having a potential application in beekeeping.

Keywords: caffeine; deformed wing virus (DWV); honeybee; immune gene.