Ionic Liquid-Incorporated Zn-Ion Conducting Polymer Electrolyte Membranes

Polymers (Basel). 2020 Aug 6;12(8):1755. doi: 10.3390/polym12081755.

Abstract

In this study, novel ionic liquid-incorporated Zn-ion conducting polymer electrolyte membranes containing polymer matrix poly (vinylidene fluoride-hexafluoropropylene) (PVdF-HFP) and 1-ethyl-3-methylimidazolium trifluoromethanesulfonate (EMITf), along with zinc trifluoromethanesulfonate Zn(Tf)2, are prepared and investigated. It is ascertained that the optimal membrane ILPE-Zn-4 (the mass ratio of EMITf:Zn(Tf)2:PVDF-HFP is 0.4:0.4:1), with abundant nanopores, exhibits a high amorphousness. At room temperature, the optimized electrolyte membrane offers a good value of ionic conductivity (~1.44 × 10-4 S cm-1), with a wide electrochemical stability window (~4.14 V). Moreover, the electrolyte membrane can sustain a high thermal decomposition temperature (~305 °C), and thus its mechanical performance is sufficient for practical applications. Accordingly, the ionic liquid-incorporated Zn-ion conducting polymer electrolyte could be a potential candidate for Zn-based energy storage applications.

Keywords: Zn-ion conducting; ionic conductivity; ionic liquid; polymer electrolyte.