Optoelectronic properties of diathiafulvalene-functionalized diketopyrrolopyrrole-fullerene molecular dyad

Spectrochim Acta A Mol Biomol Spectrosc. 2020 Dec 5:242:118767. doi: 10.1016/j.saa.2020.118767. Epub 2020 Aug 1.

Abstract

Single component molecular dyad donor-acceptor junction is an important type of organic solar cells. Understanding the optoelectronic properties of molecular dyad plays the critical role to develop active layer materials for such kind of solar cells. Here, diathiafulvalene-functionalized diketopyrrolopyrrole-fullerene (DFDPP-Ful) was selected as the representative system, and the geometries, electronic structures and excitation properties of DFDPP-Ful monomer and dimer were systematically investigated based on extensive quantum chemistry calculations. The transition configurations and molecular orbitals show that the effective electron donor and acceptor are DFDPP and fullerene moieties, respectively. It also found the light harvesting is dominated by local excitation in DFDPP moiety. Meanwhile, the hybridization and quasi-degeneration between charge transfer (CT) and local excitation exist. The dimer data suggest that the increased excited states contribute to the expanding of absorption spectra, and the excitations exhibit both the intermolecular and intra-molecular CTs. Also, the remarkable CT energy differences among the different dimer models for the lowest CT excited states support the strong interface and energy disorder in such system. Therefore, the suggestions for developing molecular dyad of single component organic solar cells would be the combination of increasing light absorption, enhancing CT and local excitation hybridization, as well as suppressing energy and interface disorder by the aid of molecular design.

Keywords: Charge transfer; Electronic structures; Excitation; Fullerene molecular dyad; Single component organic solar cells.