An optical sensor for the detection and quantification of lidocaine in cocaine samples

Analyst. 2020 Oct 21;145(20):6562-6571. doi: 10.1039/d0an01246g. Epub 2020 Aug 11.

Abstract

An optical sensor (OS) was synthesized by mixing 10,12-pentacosadiinoic acid (PDA) with a triblock copolymer for use in the detection/quantification of lidocaine (LD) in seized cocaine hydrochloride (seized CH) samples. In the presence of LD, the OS presented a chromatic transition from blue to red, while no chromatic transition was observed for other typical cocaine adulterants or cocaine hydrochloride. Isothermal titration calorimetry analysis revealed specific interactions between the PDA molecules of the OS and the LD molecules, with these interactions being enthalpically favorable (-1.20 to -36.7 kJ mol-1). Therefore, the OS color change only occurred when LD was present in the sample, making the OS selective for LD. Consequently, LD was successfully detected in seized CH samples, irrespective of the type of adulteration. The OS was used for the quantification of LD in seized CH samples containing different adulterants, providing a linear range of 0.0959 to 0.225% (w/w), a precision of 7.2%, an accuracy ranging from -10 to 10%, and limits of detection and quantification of 0.0110% (w/w) and 0.0334% (w/w), respectively.

MeSH terms

  • Cocaine*
  • Drug Contamination
  • Lidocaine

Substances

  • Lidocaine
  • Cocaine