Sawdust-Based Cellulose Nanocrystals Incorporated with ZnO Nanoparticles as Efficient Adsorption Media in the Removal of Methylene Blue Dye

ACS Omega. 2020 Jul 22;5(30):18798-18807. doi: 10.1021/acsomega.0c01924. eCollection 2020 Aug 4.

Abstract

The continuous increase in the wastes generated from forestry, timber, and paper industries has engendered the need for their transformation into economically viable materials for the benefit of mankind. This study reports the preparation and application of sawdust-derived cellulose nanocrystals (CNC) incorporated with zinc oxide as a novel adsorbent for the removal of methylene blue (MB) from water. The CNC/ZnO nanocomposite was characterized using Fourier transform infrared, X-ray diffraction (XRD), and scanning electron microscopy. The amount of MB adsorbed was determined by a UV-vis spectrophotometer. The microscopic analysis revealed that the nanocomposite had a narrow particle size range and exhibited both spherical and rod-like morphologies. The XRD analysis of the nanocomposite showed characteristic high-intensity peaks in the range of 30-75° attributed to the presence of ZnO nanoparticles, which were responsible for the enhancement of the crystallinity of the nanocomposite. The results revealed a relationship between the MB removal efficiency and changes in solution pH, nanocomposite dosage, initial concentration, temperature, and reaction time. The adsorption equilibrium isotherm, measured in the temperature range of 25-45 °C and using a concentration of 20-100 mg/L, showed that the MB sorption followed the Langmuir isotherm with a maximum adsorption capacity of 64.93 mg/g. A pseudo-second-order kinetic model gave the best fit to the experimental data. Based on adsorption performance, the CNC/ZnO nanocomposite offers prospects for further research and application in amelioration of dye-containing effluent.