Structure-based design of peptides that trigger Streptococcus pneumoniae cell death

FEBS J. 2021 Mar;288(5):1546-1564. doi: 10.1111/febs.15514. Epub 2020 Aug 31.

Abstract

Toxin-antitoxin (TA) systems regulate key cellular functions in bacteria. Here, we report a unique structure of the Streptococcus pneumoniae HigBA system and a novel antimicrobial agent that activates HigB toxin, which results in mRNA degradation as an antibacterial strategy. In this study, protein structure-based peptides were designed and successfully penetrated the S. pneumoniae cell membrane and exerted bactericidal activity. This result represents the time during which inhibitors triggered S. pneumoniae cell death via the TA system. This discovery is a remarkable milestone in the treatment of antibiotic-resistant S. pneumoniae, and the mechanism of bactericidal activity is completely different from those of current antibiotics. Furthermore, we found that the HigBA complex shows a crossed-scissor interface with two intermolecular β-sheets at both the N and C termini of the HigA antitoxin. Our biochemical and structural studies provided valuable information regarding the transcriptional regulation mechanisms associated with the structural variability of HigAs. Our in vivo study also revealed the potential catalytic residues of HigB and their functional relationships. An inhibition study with peptides additionally proved that peptide binding may allosterically inhibit HigB activity. Overall, our results provide insights into the molecular basis of HigBA TA systems in S. pneumoniae, which can be applied for the development of new antibacterial strategies. DATABASES: Structural data are available in the PDB database under the accession number 6AF4.

Keywords: DNA-binding; antibacterial strategy; ribonuclease; toxin-antitoxin system.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Allosteric Regulation / drug effects
  • Allosteric Site
  • Antimicrobial Cationic Peptides / chemical synthesis
  • Antimicrobial Cationic Peptides / pharmacology*
  • Antitoxins / chemistry*
  • Antitoxins / metabolism
  • Bacterial Toxins / antagonists & inhibitors*
  • Bacterial Toxins / chemistry
  • Bacterial Toxins / metabolism
  • Cell Membrane Permeability
  • Cloning, Molecular
  • Crystallography, X-Ray
  • Drug Design
  • Drug Discovery*
  • Escherichia coli / genetics
  • Escherichia coli / metabolism
  • Gene Expression
  • Genetic Vectors / chemistry
  • Genetic Vectors / metabolism
  • Microbial Sensitivity Tests
  • Molecular Docking Simulation
  • Protein Binding
  • Protein Conformation, alpha-Helical
  • Protein Conformation, beta-Strand
  • Protein Engineering / methods
  • Protein Interaction Domains and Motifs
  • Recombinant Proteins / chemistry
  • Recombinant Proteins / genetics
  • Recombinant Proteins / metabolism
  • Streptococcus pneumoniae / drug effects*
  • Streptococcus pneumoniae / genetics
  • Streptococcus pneumoniae / growth & development
  • Streptococcus pneumoniae / pathogenicity
  • Structure-Activity Relationship
  • Toxin-Antitoxin Systems / drug effects*

Substances

  • Antimicrobial Cationic Peptides
  • Antitoxins
  • Bacterial Toxins
  • Recombinant Proteins