Hydrogen Bonding Enhances the Electrochemical Hydrogenation of Benzaldehyde in the Aqueous Phase

Angew Chem Int Ed Engl. 2021 Jan 4;60(1):290-296. doi: 10.1002/anie.202008178. Epub 2020 Oct 27.

Abstract

The hydrogenation of benzaldehyde to benzyl alcohol on carbon-supported metals in water, enabled by an external potential, is markedly promoted by polarization of the functional groups. The presence of polar co-adsorbates, such as substituted phenols, enhances the hydrogenation rate of the aldehyde by two effects, that is, polarizing the carbonyl group and increasing the probability of forming a transition state for H addition. These two effects enable a hydrogenation route, in which phenol acts as a conduit for proton addition, with a higher rate than the direct proton transfer from hydronium ions. The fast hydrogenation enabled by the presence of phenol and applied potential overcompensates for the decrease in coverage of benzaldehyde caused by competitive adsorption. A higher acid strength of the co-adsorbate increases the intensity of interactions and the rates of selective carbonyl reduction.

Keywords: electrochemistry; electron transfer; hydrogen bonding; reduction; supported catalysts.