Target genes directly regulated by Eha are required for Edwardsiella tarda survival within macrophages

Vet Microbiol. 2020 Aug:247:108739. doi: 10.1016/j.vetmic.2020.108739. Epub 2020 Jun 4.

Abstract

Eha is a virulence regulator in Edwardsiella tarda (E. tarda). The present study examined how Eha regulated its target genes to affect the bacterial survival within the cells. We constructed the reporter a pGEX-4T-ehaflag plasmid expressing Eha tagged at its C terminus with the flag epitope, and introduced the plasmid into an eha mutant ET13 strain, and obtained a Cehaflag strain. The expression and activity of an EhaFlag fusion protein restored the survival of the Cehaflag as the wild type in macrophages by Western blotting and intracellular survival experiments. We used a monoclonal anti-Flag antibody to precipitate EhaFlag-DNA complexes using chromatic immunoprecipitation (ChIP). We then designed primers based on the differentially-expressed genes identified from RNA-sequencing, and identified ten Eha-interacting genes by qPCR. We amplified the promoter regions of the ten genes and the eha gene from ET13 strain by PCR, constructed pBD-PtargetlacZ and pBD-PehalacZ plasmids. The eha gene directly and positively regulated these target genes, and be negatively auto-regulated by Eha in E. tarda, as determined by comparing their β-Galactosidase activities. These target genes were distributed in the categories involved in the bacterial growth, movement and resistance to H2O2 or acid. We further constructed a ETATCC_RS15225 mutant (△dcuA1), a ETATCC_ RS14855 mutant (△flgK) anda ETATCC_RS07650 mutant (ΔtnaA), and a partial complementary strains of △eha-tnaA and △eha-flgK and the complementary strains of CΔflgK and CΔtnaA. The ETATCC_RS15225 gene probably encoded a transporter protein DcuA1 at outer membrane with SDS-PAGE and RT-PCR. The ETATCC _RS14855 gene probably encoded FlgK protein and affected the bacterial motility. The ETATCC_RS07650 gene encoded Tryptophanase, which affected the bacterial survival within macrophages. With the assistance of these above strains, our results showed that the eha gene was able to regulate the ETATCC_RS15225 gene to express its outer membrane protein DcuA1, the ETATCC _RS14855 gene to control the flagellar motility and the ETATCC_RS07650 to affect the bacterial survival within macrophages. With the combination of other functions of above three genes, our results suggested that Eha directly regulates the target genes to affect E. tarda to survive within the cells.

Keywords: ChIP; Edwardsiella tarda; Eha gene; Macrophage; Regulation.

MeSH terms

  • Animals
  • Bacterial Proteins / genetics*
  • Edwardsiella tarda / genetics*
  • Edwardsiella tarda / physiology
  • Gene Expression Regulation, Bacterial*
  • Macrophages / microbiology*
  • Mice
  • Microbial Viability*
  • RAW 264.7 Cells
  • Virulence / genetics

Substances

  • Bacterial Proteins