The role of core and variable Gene Regulatory Network modules in tooth development and evolution

Integr Comp Biol. 2020 Aug 6:icaa116. doi: 10.1093/icb/icaa116. Online ahead of print.

Abstract

Among the developmental processes that have been proposed to influence the direction of evolution, the modular organization of developmental gene regulatory networks (GRNs) has shown particular promise. In theory, GRNs have core modules comprised of essential, conserved circuits of genes, and sub-modules of downstream, secondary circuits of genes that are more susceptible to variation. While this idea has received considerable interest as of late, the field of evo-devo lacks the experimental systems needed to rigorously evaluate this hypothesis. Here, we introduce an experimental system, the vertebrate tooth, that has great potential as a model for testing this hypothesis. Tooth development and its associated GRN have been well studied and modeled in both model and non-model organisms. We propose that the existence of modules within the tooth GRN explains both the conservation of developmental mechanisms and the extraordinary diversity of teeth among vertebrates. Based on experimental data, we hypothesize that there is a conserved core module of genes that is absolutely necessary to ensure tooth or cusp initiation and development. In regard to tooth shape variation between species, we suggest that more relaxed sub-modules activated at later steps of tooth development, e.g., during the morphogenesis of the tooth and its cusps, control the different axes of tooth morphological variation.

Keywords: GRN; development; evo-devo; tooth; vertebrate.