Short- and long-term treatment with TNF-α inhibits the induction of osteoblastic differentiation in cyclic tensile-stretched periodontal ligament fibroblasts

Eur J Orthod. 2020 Sep 11;42(4):396-406. doi: 10.1093/ejo/cjaa042.

Abstract

Background: Cyclic tensile stretching (CTS) induces osteoblastic differentiation of periodontal ligament fibroblasts (PDLF). On the other hand, increased concentrations of tumour necrosis factor-α (TNF-α) are found in inflammatory conditions, leading to periodontal disease and tooth loss. Accordingly, our aim was to investigate the short- and long-term effect of TNF-α on the response of human PDLF to CTS and its implication on osteoblastic differentiation.

Methods: PDLF were either pre-incubated for 4 hours or were repeatedly exposed to TNF-α for up to 50 days and then subjected to CTS. Gene expression was determined by quantitative real-time polymerase chain reaction. Activation of mitogen-activated protein kinase (MAPK) was monitored by western analysis and cell proliferation by bromodeoxyuridine incorporation. Intracellular reactive oxygen species were determined by the 2´, 7´-dichlorofluorescein-diacetate assay and osteoblastic differentiation by Alizarin Red-S staining after an osteo-inductive period of 21 days.

Results: CTS of PDLF induced an immediate upregulation of the c-fos transcription factor and, further downstream the overexpression of alkaline phosphatase and osteopontin, two major osteoblast marker genes. A 4-hour pre-incubation with TNF-α repressed these effects. Similarly, long-term propagation of PDLF along with TNF-α diminished their osteoblastic differentiation capacity and suppressed cells' CTS-elicited responses. The observed phenomena were not linked with TNF-α-induced premature senescence or oxidative stress. While CTS induced the activation of MAPKs, involved in mechanotransduction, TNF-α treatment provoked a small delay in the phosphorylation of extracellular signal-regulated kinase and c-Jun N-terminal kinase.

Conclusion: Increased concentrations of TNF-α, such as those recorded in many inflammatory diseases, suppress PDLF's immediate responses to mechanical forces compromising their osteoblastic differentiation potential, possibly leading to tissue's impaired homeostasis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cell Differentiation
  • Cells, Cultured
  • Fibroblasts
  • Humans
  • Mechanotransduction, Cellular
  • Osteoblasts
  • Periodontal Ligament*
  • Tumor Necrosis Factor-alpha*

Substances

  • Tumor Necrosis Factor-alpha