Effect of low-level laser therapy on the inflammatory response in an experimental model of ventilator-induced lung injury

Photochem Photobiol Sci. 2020 Oct 14;19(10):1356-1363. doi: 10.1039/d0pp00053a.

Abstract

The effect of low-level laser therapy (LLLT) on an experimental model of ventilator-induced lung injury (VILI) was evaluated in this study. 24 adult Wistar rats were randomized into four groups: protective mechanical ventilation (PMV), PMV + laser, VILI and VILI + laser. The animals of the PMV and VILI groups were ventilated with tidal volumes of 6 and 35 ml kg-1, respectively, for 90 minutes. After the first 60 minutes of ventilation, the animals in the laser groups were irradiated (808 nm, 100 mW power density, 20 J cm-2 energy density, continuous emission mode, and exposure time of 5 s) and after 30 minutes of irradiation, the animals were euthanized. Lung samples were removed for morphological analysis, bronchoalveolar lavage (BAL) and real time quantitative polynucleotide chain reaction (RT-qPCR). The VILI group showed a greater acute lung injury (ALI) score with an increase in neutrophil infiltration, higher neutrophil count in the BAL fluid and greater cytokine mRNA expression compared to the PMV groups (p < 0.05). The VILI + laser group when compared to the VILI group showed a lower ALI score (0.35 ± 0.08 vs. 0.54 ± 0.13, p < 0.05), alveolar neutrophil infiltration (7.00 ± 5.73 vs. 21.50 ± 9.52, p < 0.05), total cell count (1.90 ± 0.71 vs. 4.09 ± 0.96 × 105, p < 0.05) and neutrophil count in the BAL fluid (0.60 ± 0.37 vs. 2.28 ± 0.48 × 105, p < 0.05). Moreover, LLLT induced a decrease in pro-inflammatory and an increase of anti-inflammatory mRNA levels compared to the VILI group (p < 0.05). In conclusion, LLLT was found to reduce the inflammatory response in an experimental model of VILI.

MeSH terms

  • Animals
  • Disease Models, Animal*
  • Inflammation / therapy*
  • Low-Level Light Therapy*
  • Male
  • Rats
  • Rats, Wistar
  • Ventilator-Induced Lung Injury / therapy*