Treating honey bees with an extremely low frequency electromagnetic field and pesticides: Impact on the rate of disappearance of azoxystrobin and λ-cyhalothrin and the structure of some functional groups of the probabilistic molecules

Environ Res. 2020 Nov:190:109989. doi: 10.1016/j.envres.2020.109989. Epub 2020 Jul 25.

Abstract

The purpose of these laboratory tests was to assess the impact of 50 Hz EMF (electromagnetic field) on the disappearance of azoxystrobin (active ingredient (AI) of Amistar 250 SC) and λ-cyhalothrin (AI of Karate Zeon 050 CS) in the body of honey bees (Apis mellifera) and the structure of some functional groups of the probabilistic molecules in their organisms. Amistar 250 SC (an azoxystrobin-based fungicide; ABF) and Karate Zeon 050 CS (a λ-cyhalothrin-based insecticide; CBI) are plant protection products (PPPs) applied to bee-pollinated-crops. Chromatographic methods were used to assess the rate of AI disappearance. EMF affected the rate of disappearance of azoxystrobin and λ-cyhalothrin in bees within 6 h of intoxication. When these substances were used separately their disappearance in the presence of EMF slowed from 12.6% to 10.5% h-1 and from 9.2% to 4.8% h-1, respectively, and accelerated when used in a mixture, from 14.1% to 14.7% h-1 and from 9.3% to 11.5% h-1 respectively. Fourier Transform Infrared (FTIR) spectroscopy was used to analyze changes in the functional groups of the probabilistic molecules of the tested bees. To obtain the information about the spectra variations we used the Principal Component Analysis. It has been shown, that EMF statistically significantly interferes with amide I and II, symmetric PO32- group from DNA, RNA and phospholipids vibrations. It also increased the number of changes of functional groups of the probabilistic molecules caused by ABF, but at the same time limited the changes in the functional groups studied in bees treated with CBI and a mixture containing both of them. In addition, exposure to EMF in bees treated with fungicide or insecticide, separately, and with both preparations caused differences (p < 0.05) in the secondary structure of proteins compared to controls. The obtained results indicate that EMF may affect the rate of metabolism and the detoxification process of pesticides in bees, depending on the AI of PPPs, applied individually or together. However, further detailed research is required to explain the mechanism of EMF as a detoxification modulator.

Keywords: Azoxystrobin and λ-cyhalothrin disappearance; Chromatography; Electromagnetic field; FTIR; Honey bees.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Bees
  • Electromagnetic Fields / adverse effects
  • Insecticides*
  • Nitriles
  • Pesticides*
  • Pyrethrins*
  • Pyrimidines
  • Strobilurins

Substances

  • Insecticides
  • Nitriles
  • Pesticides
  • Pyrethrins
  • Pyrimidines
  • Strobilurins
  • azoxystrobin
  • cyhalothrin