A new langbeinite-type phosphate K2GdHf(PO4)3: synthesis, crystal structure, band structure and luminescence properties

Acta Crystallogr C Struct Chem. 2020 Aug 1;76(Pt 8):771-778. doi: 10.1107/S2053229620009857. Epub 2020 Jul 22.

Abstract

Langbeinite-type compounds are a large family that include phosphates, sulfates and arsenates, and which are accompanied by interesting physical properties. This work reports a new disordered langbeinite-type compound, K2GdHf(PO4)3 [dipotassium gadolinium hafnium tris(phosphate)], and its structure as determined by single-crystal X-ray diffraction. Theoretical studies reveal that K2GdHf(PO4)3 is an insulator with a direct band gap of 4.600 eV and that the optical transition originates from the O-2p→Hf-5d transition. A Ce3+-doped phosphor, K2Gd0.99Ce0.01Hf(PO4)3, was prepared and its luminescence properties studied. With 324 nm light excitation, a blue emission band was observed due to the 5d1→4f1 transition of Ce3+. The average luminescence lifetime was calculated to be 5.437 µs and the CIE chromaticity coordinates were (0.162, 0.035). One may expect that K2Gd0.99Ce0.01Hf(PO4)3 can be used as a good blue phosphor for three-colour white-light-emitting diodes (WLEDs).

Keywords: WLED; crystal structure; gadolinium; hafnium; langbeinite-type structure; luminescence; phosphor.