Environmental fluctuations can promote evolutionary rescue in high-extinction-risk scenarios

Proc Biol Sci. 2020 Aug 12;287(1932):20201144. doi: 10.1098/rspb.2020.1144. Epub 2020 Aug 5.

Abstract

Substantial environmental change can force a population onto a path towards extinction, but under some conditions, adaptation by natural selection can rescue the population and allow it to persist. This process, known as evolutionary rescue, is believed to be less likely to occur with greater magnitudes of random environmental fluctuations because environmental variation decreases expected population size, increases variance in population size and increases evolutionary lag. However, previous studies of evolutionary rescue in fluctuating environments have only considered scenarios in which evolutionary rescue was likely to occur. We extend these studies to assess how baseline extinction risk (which we manipulated via changes in the initial population size, degree of environmental change or mutation rate) influences the effects of environmental variation on evolutionary rescue following an abrupt environmental change. Using a combination of analytical models and stochastic simulations, we show that autocorrelated environmental variation hinders evolutionary rescue in low-extinction-risk scenarios but facilitates rescue in high-risk scenarios. In these high-risk cases, the chance of a run of good years counteracts the otherwise negative effects of environmental variation on evolutionary demography. These findings can inform the development of effective conservation practices that consider evolutionary responses to abrupt environmental changes.

Keywords: antibiotic resistance; eco-evolutionary dynamics; environment stochasticity; environmental change; evolutionary conservation biology; temporal autocorrelation.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Adaptation, Physiological
  • Biological Evolution*
  • Environment
  • Extinction, Biological*
  • Population Density
  • Selection, Genetic

Associated data

  • Dryad/10.5061/dryad.4xgxd2568
  • figshare/10.6084/m9.figshare.c.5069685