Low frequency noise-dark current correlations in HgCdTe infrared photodetectors

Opt Express. 2020 Aug 3;28(16):23660-23669. doi: 10.1364/OE.399565.

Abstract

In this paper, low frequency noise and dark current correlation is investigated as a function of reverse bias and temperature for short-wave infrared (SWIR), mid-wave infrared (MWIR), and long-wave infrared (LWIR) HgCdTe homo-junction photodetectors. Modelling of dark current-voltage characteristics shows that the detectors have ohmic-behavior under small reverse bias, thus enabling further analysis of 1/f noise-current dependences with the empirical square-law relation (SI ∼ I2) at different temperature regions. It is found that for the SWIR and MWIR devices, the total 1/f noise spectral density at arbitrary temperatures can be modelled by the sum of shunt and generation-recombination noise as SI(T,f)=[αSHISH2(T)+αG-RIG-R2(T)]/f, with no contribution from the diffusion component observed. On the other hand, for the LWIR device the diffusion component induced 1/f noise that cannot be overlooked in high temperature regions, and a 1/f noise-current correlation of SI(T,f)={αs[IDIFF2(T)+IG-R2(T)]+αSHISH2(T)}/f is proposed, with a shared noise coefficient of αs ≅ 1 × 10-9 which is close to that calculated for shunt noise. The 1/f noise-current correlation established in this work can provide a powerful tool to study the low frequency noise characteristics in HgCdTe-based photodetectors and to help optimizing the "true" detectivity of devices operating at low frequency regime.