Euglena Gracilis and β-Glucan Paramylon Induce Ca2+ Signaling in Intestinal Tract Epithelial, Immune, and Neural Cells

Nutrients. 2020 Jul 30;12(8):2293. doi: 10.3390/nu12082293.

Abstract

The intestinal tract contains over half of all immune cells and peripheral nerves and manages the beneficial interactions between food compounds and the host. Paramylon is a β-1,3-glucan storage polysaccharide from Euglena gracilis (Euglena) that exerts immunostimulatory activities by affecting cytokine production. This study investigated the signaling mechanisms that regulate the beneficial interactions between food compounds and the intestinal tract using cell type-specific calcium (Ca2+) imaging in vivo and in vitro. We successfully visualized Euglena- and paramylon-mediated Ca2+ signaling in vivo in intestinal epithelial cells from mice ubiquitously expressing the Yellow Cameleon 3.60 (YC3.60) Ca2+ biosensor. Moreover, in vivo Ca2+ imaging demonstrated that the intraperitoneal injection of both Euglena and paramylon stimulated dendritic cells (DCs) in Peyer's patches, indicating that paramylon is an active component of Euglena that affects the immune system. In addition, in vitro Ca2+ imaging in dorsal root ganglia indicated that Euglena, but not paramylon, triggers Ca2+ signaling in the sensory nervous system innervating the intestine. Thus, this study is the first to successfully visualize the direct effect of β-1,3-glucan on DCs in vivo and will help elucidate the mechanisms via which Euglena and paramylon exert various effects in the intestinal tract.

Keywords: Ca2+ signaling; Euglena gracilis; immune system; intestinal epithelial cell; intravital imaging; small intestine; β-1,3-glucan.

MeSH terms

  • Animals
  • Calcium Signaling / physiology*
  • Cytokines / biosynthesis
  • Dendritic Cells / metabolism
  • Dendritic Cells / microbiology
  • Epithelial Cells / metabolism
  • Epithelial Cells / microbiology
  • Euglena gracilis*
  • Gastrointestinal Tract / cytology*
  • Gastrointestinal Tract / metabolism
  • Gastrointestinal Tract / microbiology
  • Glucans / chemistry
  • Glucans / pharmacology*
  • Immune System / metabolism
  • Immune System / microbiology
  • Mice
  • beta-Glucans*

Substances

  • Cytokines
  • Glucans
  • beta-Glucans
  • paramylon