Unraveling microbial fermentation features in kimchi: from classical to meta-omics approaches

Appl Microbiol Biotechnol. 2020 Sep;104(18):7731-7744. doi: 10.1007/s00253-020-10804-8. Epub 2020 Aug 4.

Abstract

Kimchi is a traditional Korean fermented food prepared via spontaneous fermentation by various microorganisms originating from vegetables such as kimchi cabbage, radishes, and garlic. Recent advances in meta-omics approaches that integrate metataxonomics, metagenomics, metatranscriptomics, and metabolomics have contributed to explaining and understanding food fermentation processes. Kimchi microbial communities are composed of majorly lactic acid bacteria such as Leuconostoc, Lactobacillus, and Weissella and fewer eukaryotic microorganisms and kimchi fermentation are accomplished by complex microbial metabolisms to produce diverse metabolites such as lactate, acetate, CO2, ethanol, mannitol, amino acids, formate, malate, diacetyl, acetoin, and 2, 3-butanediol, which determine taste, quality, health benefit, and safety of fermented kimchi products. Therefore, in the future, kimchi researches should be systematically performed using the meta-omics approaches to understand complex microbial metabolisms during kimchi fermentation. KEY POINTS: • Spontaneous fermentation by raw material microbes gives kimchi its unique flavor. • The kimchi microbiome is altered by environmental factors and raw materials. • Through the multi-omics approaches, it is possible to accurately analyze the diversity and metabolic characteristics of kimchi microbiome and discover potential functionalities.

Keywords: Fermentation; Genome; Kimchi; Lactic acid bacteria; Lactobacillus; Leuconostoc; Meta-omics approaches; Weissella.

Publication types

  • Review

MeSH terms

  • Fermentation
  • Fermented Foods*
  • Food Microbiology
  • Leuconostoc
  • Weissella* / genetics