Real-time infrared image detail enhancement based on fast guided image filter and plateau equalization

Appl Opt. 2020 Jul 20;59(21):6407-6416. doi: 10.1364/AO.396417.

Abstract

Image detail enhancement is critical to the performance of infrared imaging systems because the original images generally suffer from low contrast and a low signal-to-noise ratio. Although conventional decomposition-based methods have advantages in enhancing image details, they also have clear disadvantages, which include intensive computations, over-enhanced noise, and gradient reversal artifacts. In this paper, we propose to accelerate enhancement processing by using a fast guided filter and plateau equalization. Our method consists of image decomposition, base and detail layers processing, and projection of the enhanced image to an 8-bit dynamic range. Experimental results demonstrated that our proposed method achieves a good balance among detail enhancement performance, noise and gradient reversal artifacts suppression, and computational cost, with a frame rate around 30 fps for 640×512 infrared images.