Commercial Marine-Degradable Polymers for Flexible Packaging

iScience. 2020 Aug 21;23(8):101353. doi: 10.1016/j.isci.2020.101353. Epub 2020 Jul 9.

Abstract

Plastic pollution is entering the world's oceans at alarming rates and is expected to outweigh fish populations by 2050. This plastic waste originates from land-based applications, like consumer product packaging, and is composed of high-durability polyolefins. These conventional plastics possess desirable properties, including high chemical stability, moisture barrier, and thermoplastic characteristics. Unfortunately, if these materials reach marine environments, they fragment into microplastics that cannot be biologically assimilated. The aim of this review is to investigate commercial polymers that are biodegradable in marine environments but have comparable product stability and moisture barrier properties to polyolefins. Among commercially available biopolymers, thermoplastic starches (TPS) and polyhydroxyalkanoates (PHAs) have been shown to biodegrade in marine environments. Moreover, these biopolymers are thermoplastics and possess similar thermoforming properties to polyolefins. At present, TPS and PHAs have limitations, including chemical instability, limited moisture barrier properties, and high production costs. To replace conventional polymers with PHAs and TPS, these properties must be improved.

Keywords: Environmental Science; Industrial Chemistry; Materials Science; Polymer Chemistry.

Publication types

  • Review