Fluorescence spectroscopy on paraffin-preserved human liver samples to classify several grades of fibrosis

Spectrochim Acta A Mol Biomol Spectrosc. 2020 Dec 5:242:118737. doi: 10.1016/j.saa.2020.118737. Epub 2020 Jul 18.

Abstract

Nowadays, it is well established that biopsy is the gold standard for medical diagnosis of liver disease; however, recent studies have shown numerous discrepancies in biopsy assessment, even when it is evaluated by senior pathologists. Fluorescence spectroscopy is a tool that has been of utility in the diagnosis of different diseases based on biopsy analysis. Thus, fluorescence study of liver samples with five different degrees of fibrosis is presented. Paraffin-preserved human liver tissue was provided on white plastic cassettes by the Hospital General de Mexico "Dr. Eduardo Liceaga". Specimens were diagnosed by two independent-senior pathologists in a double-blind test and classified into five different groups: F0, F1, F2, F3, and F4, according to the METAVIR scale for liver fibrosis. Fluorescence spectroscopy measurements were performed using three different excitation wavelengths: 385, 405, and 450 nm. Besides, diffuse reflectance spectroscopy (DRS) measurements were taken with white light to determine morphological changes in the tissue and to compare the results with medical diagnosis. The spectral analysis at excitation wavelengths of 385 nm and 405 nm showed poor correlation with medical diagnosis. Likewise, in order to discard all possible error-sources involved in the measurements, an exhaustive study was carried out; it included the determination of the fluorescence noise produced by paraffin, cassette, and the tissue itself. At 450 nm excitation wavelength, no fluorescence by the cassette was detected and noise-subtraction methods were not required, this allows a high correlation of hepatic fibrosis stages between pathological diagnosis and spectroscopic analysis. For this excitation wavelength, 89.87% correlation with DRS measurements and 82.00% with medical diagnosis were obtained. This work demonstrates that fluorescence spectroscopy using 450 nm excitation wavelength might work as a complementary tool to grade hepatic fibrosis in human liver specimens.

Keywords: Fluorescence spectroscopy; Liver fibrosis; Paraffin-preserved human liver samples.

MeSH terms

  • Humans
  • Liver*
  • Mexico
  • Paraffin*
  • Sensitivity and Specificity
  • Spectrometry, Fluorescence

Substances

  • Paraffin