Nuclear Excitation of the ^{229}Th Isomer via Defect States in Doped Crystals

Phys Rev Lett. 2020 Jul 17;125(3):032501. doi: 10.1103/PhysRevLett.125.032501.

Abstract

When Th nuclei are doped in CaF_{2} crystals, a set of electronic defect states appear in the crystal band gap which would otherwise provide complete transparency to vacuum-ultraviolet radiation. The coupling of these defect states to the 8 eV ^{229m}Th nuclear isomer in the CaF_{2} crystal is investigated theoretically. We show that although previously viewed as a nuisance, the defect states provide a starting point for nuclear excitation via electronic bridge mechanisms involving stimulated emission or absorption using an optical laser. The rates of these processes are at least 2 orders of magnitude larger than direct photoexcitation of the isomeric state using available light sources. The nuclear isomer population can also undergo quenching when triggered by the reverse mechanism, leading to a fast and controlled decay via the electronic shell. These findings are relevant for a possible solid-state nuclear clock based on the ^{229m}Th isomeric transition.