Testing the Two-Layer Model for Correcting Near Cloud Reflectance Enhancement Using LES/SHDOM Simulated Radiances

J Geophys Res Atmos. 2016 Aug 24;121(16):9661-9674. doi: 10.1002/2016JD025021. Epub 2016 Aug 9.

Abstract

A transition zone exists between cloudy skies and clear sky, such that clouds scatter solar radiation into clear sky regions. From a satellite perspective, it appears that clouds enhance the radiation nearby. We seek a simple method to estimate this enhancement, since it is so computationally expensive to account for all 3-dimensional (3D) scattering processes. In previous studies, we developed a simple two-layer model (2LM) that estimated the radiation scattered via cloud-molecular interactions. Here we have developed a new model to accounts for cloud-surface interaction (CSI). We test the models by comparing to calculations provided by full 3D radiative transfer simulations of realistic cloud scenes. For these scenes, the MODIS-like radiance fields were computed from the Spherical Harmonic Discrete Ordinate Method (SHDOM), based on a large number of cumulus fields simulated by the UCLA Large Eddy Simulation (LES) model. We find that the original 2LM model that estimates cloud-air molecule interactions accounts for 64% of the total reflectance enhancement, and the new model (2LM+CSI) that also includes cloud-surface interactions accounts for nearly 80%. We discuss the possibility of accounting for cloud-aerosol radiative interactions in 3D cloud induced reflectance enhancement, which may explain the remaining 20% of enhancements. Because these are simple models, these corrections can be applied to global satellite observations (e.g. MODIS) and help to reduce biases in aerosol and other clear-sky retrievals.