CacyBP/SIP promotes tumor progression by regulating apoptosis and arresting the cell cycle in osteosarcoma

Exp Ther Med. 2020 Aug;20(2):1397-1404. doi: 10.3892/etm.2020.8843. Epub 2020 Jun 5.

Abstract

Osteosarcoma (OS) is the most common primary malignant bone tumor in pediatric and adolescent patients. The calcyclin-binding protein/Siah-1-interacting protein (CacyBP/SIP) performs an essential function in cell proliferation and apoptosis. The present study investigated the effect of CacyBP/SIP in OS cell proliferation and apoptosis. CacyBP/SIP mRNA expression levels were evaluated in four OS cell lines by quantitative PCR. CacyBP/SIP expression was downregulated in Saos-2 cells using a lentivirus transfection system and the transfection efficiency was analyzed. The effects of CacyBP/SIP downregulation on Saos-2 cell proliferation and colony-formation ability were evaluated by MTT and colony-formation assays. The effect of CacyBP/SIP knockdown on Saos-2 cell cycle and apoptosis was analyzed by flow cytometry cell sorting. The Cancer Genome Atlas (TCGA) data was analyzed for validation. Human OS cell lines Saos-2, MG-63, HOS and U20S expressed CacyBP/SIP mRNA. CacyBP/SIP knockdown significantly inhibited cell proliferation and colony-formation ability. G1/S phase arrest was induced by CacyBP/SIP downregulation, which also resulted in the downregulation of CDK and cyclins and the upregulation of p21. In addition, CacyBP/SIP downregulation induced Saos-2 cell apoptosis mediated by Bax and Bcl-2. High expression of CacyBP/SIP was significantly associated with poor prognosis in TCGA sarcoma database. Thus, CacyBP/SIP performs important functions in the proliferation and apoptosis of human OS cells.

Keywords: apoptosis; cell cycle; osteosarcoma; proliferation.