Intensity-duration-frequency relationship of WBGT extremes using regional frequency analysis in South Korea

Environ Res. 2020 Nov:190:109964. doi: 10.1016/j.envres.2020.109964. Epub 2020 Jul 31.

Abstract

The risk levels of heat-related extreme events need to be estimated for prediction and real-time monitoring to mitigate their impacts on air quality, public health, the ecosystem, and critical infrastructure. Many countries have adopted meteorological variable base thresholds for assessing the risk level of heat-related extreme events. These thresholds provide an approximate risk level for a specific event but do not consider its intensity and duration in the risk assessment. The current study provides a statistical tool to assess the risk of heat-related extreme events while concurrently considering their intensities and durations based on the wet-bulb globe temperature (WBGT). To this end, the intensity-duration-frequency (IDF) relationship of the extreme WBGT in South Korea was derived. Regional frequency analysis was employed to understand the IDF relationship. Return levels of heat-related extreme events in South Korea were calculated and their characteristics were investigated based on the annual maximum WBGT observations. The results showed that the IDF relationship could provide the risks of heat-related extreme events while concurrently considering their intensities and durations. The extreme WBGT in South Korea was used to categorize two regions such as coastal and inland based on their statistical characteristics. The return levels of the annual maximum WBGT events were found to vary largely by location. The return levels corresponding to 32 °C with 3-h duration for stations in the coastal and inland regions ranged from 1- to 100-years and 3- to 1000-years, respectively. Mean values of return levels for heatwave events in Seoul, Incheon, Daejon, Gwangju, Daegu, and Busan were 2.8-, 8.4-, 15.3-, 2.8-, 1.6-, and 2.2-years, respectively. The return levels of heatwaves for the warmer cities are smaller than those for cooler cities. The return levels of the heatwave events in South Korea showed a significant increasing trend in several cities, supporting the notion that the impact of heatwave events on South Korea might become more severe in the future.

Keywords: Extreme high temperature; Heat-related stress; Heatwave; Return level; Wet-bulb globe temperature.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cities
  • Ecosystem
  • Heat Stress Disorders*
  • Hot Temperature*
  • Humans
  • Republic of Korea
  • Seoul