Three-dimensional co-culture model of chronic lymphocytic leukemia bone marrow microenvironment predicts patient-specific response to mobilizing agents

Haematologica. 2021 Sep 1;106(9):2334-2344. doi: 10.3324/haematol.2020.248112.

Abstract

Chronic Lymphocytic Leukemia (CLL) cells disseminate into supportive tissue microenvironments. To investigate the mechanisms involved in leukemic cell tissue retention we developed a 3D bone marrow (BM) microenvironment that recreates CLL - BM-stromal cells interactions inside a scaffold within a bioreactor. Our system allows the parallel analysis of CLL cells retained inside the scaffold and those released in the presence/absence of pharmacological agents, mimicking tissue and circulating cell compartments, respectively. CLL cells can be retained within the scaffold only in the presence of microenvironmental elements, which through direct contact down-regulate the expression of HS1 cytoskeletal protein in CLL cells. Consist with this, the expression of HS1 was lower in CLL cells obtained from patients' BM versus CLL cells circulating in the PB. Moreover, we demonstrate that CLL cells with inactive-HS1, impaired cytoskeletal activity and a more aggressive phenotype are more likely retained within the scaffold despite the presence of Ibrutinib, whose mobilizing effect is mainly exerted on those with active-HS1, ensuing dynamic cytoskeletal activity. This differential effect would not otherwise be assessable in a traditional 2D system and may underlie a distinctive resistance of single CLL clones. Notably, CLL cells mobilized in the peripheral blood of patients during Ibrutinib therapy exhibited activated HS1, underscoring that our model reliably mirrors the in vivo situation. The 3D model described herein is suitable to reproduce and identify critical CLL-BM interactions, opening the way to pathophysiological studies and the evaluation of novel targeted therapies in an individualized manner.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bone Marrow
  • Coculture Techniques
  • Humans
  • Leukemia, Lymphocytic, Chronic, B-Cell* / drug therapy
  • Pyrazoles
  • Pyrimidines
  • Tumor Microenvironment

Substances

  • Pyrazoles
  • Pyrimidines

Grants and funding

Funding: This project was supported in part by: the Associazione Italiana per la Ricerca sul Cancro AIRC (Special Program on Metastatic Disease – 5 per mille #21198); My first grant AIRC (#17006) (principal investigator CS). The research leading to these results received funding from AIRC under IG 2018 - ID. 21332 project (principal investigator CS). Roche per la ricerca 2016. Leukemia Research Foundation grant 2018; GCH-CLL project funded by ERA NET TRANSCAN-2 Joint Transnational Call for Proposals 2014 (JTC 2014) and project #179 NOVEL funded by ERA-NET TRANSCAN-2 JTC 2016; by the European Commission/DG Research and Innovation. CNIC is supported by the Ministerio de Ciencia, Innovación y Universidades and the Pro CNIC Foundation, and it is a Severo Ochoa Center of Excellence (SEV- 2015-0505). VRC acknowledges the support of FEDER "Una manera de hacer Europa".