Data on biomechanics and elemental maps of dental implant-bone complexes in rats

Data Brief. 2020 Jul 7:31:105969. doi: 10.1016/j.dib.2020.105969. eCollection 2020 Aug.

Abstract

Implant-bone biomechanics and mechanoadaptation of peri‑implant tissue in space (around and along the length of an implant) and time (3-, 11-, and 24-day following implantation) are important for functional osseointegration of dental implants. Spatiotemporal shifts in biomechanics of implant-bone complex in rat maxillae were correlated with maximum (tensile) and minimum (compressive) principal strain profiles in peri‑implant tissue using a hybrid model; biomechanics in situ paired with digital volume correlation. Spatiotemporal changes in elemental counts and their association with mineral density of the peri‑implant tissue were mapped using electron dispersive X-ray and X-ray fluorescence microprobe techniques. Data provided within are related to biomechanical testing of an implant-bone complex in situ. Data also highlight the power of correlating elemental colocalization with tension and compression regions of the peri‑implant tissues to explain spatiotemporal mechanoadaptation of implant-bone complexes. Further interpretation of data is provided in "Mechanoadaptive Strain and Functional Osseointegration of Dental Implants in Rats [1]."

Keywords: Adaptive strain; Dental implant; Implant-bone complex (IBC); Mechanoadaptation, functional osseointegration; Spatiotemporal biomechanics.