Photocatalytic CO2 Reductions Catalyzed by meso-(1,10-Phenanthrolin-2-yl)-Porphyrins Having a Rhenium(I) Tricarbonyl Complex

Chemistry. 2020 Dec 9;26(69):16365-16373. doi: 10.1002/chem.202002558. Epub 2020 Nov 11.

Abstract

We have prepared Zn and free-base porphyrins appended with a fac-Re(phen)(CO)3 Br (where phen is 1,10-phenanthroline) at the meso position of the porphyrin, and performed photocatalytic CO2 reduction using porphyrin-Re dyads in the presence of either triethylamine (TEA) or 1,3-dimethyl-2-phenyl-2,3-dihydro-1H-benzo[d]imidazole (BIH) as an electron donor. The Zn porphyrin dyad showed a high turnover number for CO production compared with the free-base porphyrin dyad, suggesting that the central Zn ion of porphyrin plays an important role in suppressing electron accumulation on the porphyrin part and achieving high durability of the photocatalytic CO2 reduction using both TEA and BIH. The effect of acids on the CO2 reduction was investigated using the Zn porphyrin-Re dyad and BIH. Acetic acid, a relatively strong Brønsted acid, rapidly causes the porphyrin's color to fade upon irradiation and dramatically decreases CO production, whereas proper weak Brønsted acids such as 2,2,2-trifluoroethanol and phenol enhance the CO2 reduction.

Keywords: CO2 reduction; photocatalysis; photosensitizer; porphyrin; rhenium tricarbonyl complex.

Grants and funding