Validation of the usefulness of artificial neural networks for risk prediction of adverse drug reactions used for individual patients in clinical practice

PLoS One. 2020 Jul 29;15(7):e0236789. doi: 10.1371/journal.pone.0236789. eCollection 2020.

Abstract

Artificial neural networks are the main tools for data mining and were inspired by the human brain and nervous system. Studies have demonstrated their usefulness in medicine. However, no studies have used artificial neural networks for the prediction of adverse drug reactions. We aimed to validate the usefulness of artificial neural networks for the prediction of adverse drug reactions and focused on vancomycin -induced nephrotoxicity. For constructing an artificial neural network, a multilayer perceptron algorithm was employed. A 10-fold cross validation method was adopted for evaluating the resultant artificial neural network. In total, 1141 patients who received vancomycin at Hokkaido University Hospital from November 2011 to February 2019 were enrolled. Among these patients, 179 (15.7%) developed vancomycin -induced nephrotoxicity. The top three risk factors of vancomycin -induced nephrotoxicity which are relatively important in the artificial neural networks were average vancomycin trough concentration ≥ 13.0 mg/L and concomitant use of piperacillin-tazobactam and vasopressor drugs. The predictive accuracy of the artificial neural network was 86.3% and that of the multiple logistic regression model (conventional statistical method) was 85.1%. Moreover, area under the receiver operating characteristic curve (AUROC) of the artificial neural network was 0.83. In the 10-fold cross-validation, the accuracy obtained was 86.0% and AUROC was 0.82. The artificial neural network model predicting the vancomycin -induced nephrotoxicity showed good predictive performance. This appears to be the first report of the usefulness of artificial neural networks for an adverse drug reactions risk prediction model.

Publication types

  • Research Support, Non-U.S. Gov't
  • Validation Study

MeSH terms

  • Adolescent
  • Adult
  • Aged
  • Aged, 80 and over
  • Analysis of Variance
  • Drug-Related Side Effects and Adverse Reactions*
  • Female
  • Humans
  • Kidney / drug effects
  • Logistic Models
  • Male
  • Middle Aged
  • Models, Statistical
  • Neural Networks, Computer*
  • Prognosis
  • Retrospective Studies
  • Risk Assessment
  • Vancomycin / toxicity
  • Young Adult

Substances

  • Vancomycin

Grants and funding

S.I received Naomi Hoshino Memorial Grant for Pharmaceutical Initiatives, 2019. URL: http://www.kp-dousoukai.com/business.html The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.