Identifying key genes and drug screening for preeclampsia based on gene expression profiles

Oncol Lett. 2020 Aug;20(2):1585-1596. doi: 10.3892/ol.2020.11721. Epub 2020 Jun 9.

Abstract

Preeclampsia (PE) is characterized by gestational hypertension and proteinuria, and is a leading cause of maternal death and perinatal morbidity globally. Although the exact cause of PE remains unclear, several studies have suggested a role for abnormal expression of multiple genes. The aim of the present study was to identify key genes and related pathways, and to screen for drugs that regulate these genes for potential PE therapy. The GSE60438 dataset was acquired from the Gene Expression Omnibus database to analyze differentially expressed genes (DEGs). By constructing a protein-protein interaction network and performing reverse transcription-quantitative PCR verification, proteasome 26S subunit, non-ATPase 14, prostaglandin E synthase 3 and ubiquinol-cytochrome c reductase core protein 2 were identified as key genes in PE. In addition, PE was found to be associated with 'circadian rhythm', 'fatty acid metabolism', 'DNA damage response detection of DNA damage', 'regulation of DNA repair' and 'endothelial cell development'. Through connectivity map analysis of DEGs, furosemide and droperidol were suggested to be therapeutic drugs that may target the hub genes for PE treatment. Results analysis of GSEA were included in the discussion section of this article. In conclusion, the current study identified novel key genes associated with the onset of PE and potential drugs for PE treatment.

Keywords: Gene Ontology biological process terms; Kyoto Encyclopedia of Genes and Genomes pathway; PSMD14; PTGES3; UQCRC2; preeclampsia.