A critical review on ultrasonic-assisted fouling control and cleaning of fouled membranes

Ultrasonics. 2020 Dec:108:106228. doi: 10.1016/j.ultras.2020.106228. Epub 2020 Jul 18.

Abstract

Fouling is one of the most challenging problems impacting the performance of membrane-based separation technology. In recent years, ultrasound have been widely applied as an unconventional method to control membrane fouling, as well as to enhance membrane cleaning. The aim of the present work is to review the current literature and the recent developments related to the use of ultrasound as an innovative and alternative approach to improve the fouling behavior of membrane separation processes. The theory underlying ultrasonic-assisted phenomena is reviewed, together with operational factors that influence the effectiveness of the ultrasound treatment, such as frequency, power intensity, pressure, temperature, pH, and operation mode. Ultrasound irradiation effectively aids the cleaning of contaminated surfaces and enhances the permeate flux, owing to cavitation phenomena and powerful convective currents, associated with secondary phenomena, such as microstreamers, shock waves, and heating. However, the lifetime of the membranes should be carefully evaluated when applying ultrasonication as a technique of cleaning or controlling membrane fouling. Indeed, the integrity of membranes after sonication and the control of erosion produced by high ultrasonic intensities are key issues hindering the scale-up of this approach in the membrane industry. This reviews highlights the topics requiring more investigations, specifically to evaluate the economic aspects of ultrasonic assisted fouling control and cleaning in membrane processes.

Keywords: Cavitation; Cleaning; Fouling; Membrane filtration; Ultrasonic.

Publication types

  • Review