DNA methylation patterns respond to thermal stress in the viviparous cockroach Diploptera punctata

Epigenetics. 2021 Mar;16(3):313-326. doi: 10.1080/15592294.2020.1795603. Epub 2020 Aug 10.

Abstract

It is increasingly recognized that epigenetic mechanisms play a key role in acclimatization and adaptation to thermal stress in invertebrates. DNA methylation and its response to temperature variation has been poorly studied in insects. Here, we investigated DNA methylation and hydroxymethylation patterns in the viviparous cockroach Diploptera punctata at a global and gene specific level in response to variation in temperature. We specifically studied methylation percentage in the heat shock protein 70 (Hsp70), whose function is linked to thermal plasticity and resistance. We found high levels of DNA methylation in several tissues but only low levels of DNA hydroxymethylation in the brain. Hsp70 methylation patterns showed significant differences in response to temperature. We further found that global DNA methylation variation was considerably lower at 28°C compared to higher or lower temperatures, which may be indicative of the optimal temperature for this species. Our results demonstrate that DNA methylation could provide a mechanism for insects to dynamically respond to changing temperature conditions in their environment.

Keywords: DNA methylation; Hsp70; MS-AFLPs; insect; temperature.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acclimatization
  • Animals
  • Cockroaches* / metabolism
  • DNA Methylation
  • HSP70 Heat-Shock Proteins / genetics
  • HSP70 Heat-Shock Proteins / metabolism
  • Temperature

Substances

  • HSP70 Heat-Shock Proteins

Grants and funding

This work was supported by the Consejo Nacional de Ciencia y Tecnologia (CONACYT) [690129].