Treatment of biologically treated landfill leachate with forward osmosis: Investigating membrane performance and cleaning protocols

Sci Total Environ. 2020 Nov 20:744:140901. doi: 10.1016/j.scitotenv.2020.140901. Epub 2020 Jul 16.

Abstract

This study presents systematic investigations to evaluate the performance, rejection rate, fouling, cleaning protocols and impact of physical and chemical cleaning strategies on the performance of commercial cellulose triacetate (CTA) membrane. The treatment of landfill leachate (LFL) solution was performed in the active layer facing feed solution and support layer facing the draw solution (AL-FS mode), and active layer facing the draw solution and support layer facing the feed solution (AL-DS mode). Compared to the AL-FS mode, a higher flux for AL-DS mode was achieved, but membrane fouling was more severe in the latter. In both membrane orientations, the rejection rate of the FO membrane to heavy ions and contaminants in the wastewater was between 93 and 99%. Physical and chemical cleaning strategies were investigated to recover the performance of the FO membrane and to study the impact of cleaning methods on the membrane rejection rate. Physical cleaning with hot water at 35 °C and osmotic backwashing with 1.5 M NaCl demonstrated excellent water flux recovery compared to chemical cleaning. In the chemical cleaning, an optimal concentration of 3% hydrogen peroxide was determined for 100% flux recovery of the fouled membrane. However, slight membrane damage was achieved at this concentration on the active layer side. Alkaline cleaning at pH 11 was more effective than acid cleaning at pH 4, although both protocols compromised the membrane rejection rate for some toxic ions. A comparison of the membrane long-term performance found that cleaning with osmotic backwashing and hot water were effective methods to restore water flux without comprising the membrane rejection rate. Overall, it was found that physical cleaning protocols are superior to chemical cleaning protocols for forward osmosis membrane fouled by landfill leachate wastewater.

Keywords: Forward osmosis; Landfill leachate; Membrane cleaning; Membrane fouling.