Carbonate Micromotors for Treatment of Construction Effluents

Nanomaterials (Basel). 2020 Jul 19;10(7):1408. doi: 10.3390/nano10071408.

Abstract

Concrete in construction has recently gained media coverage for its negative CO2 footprint, but this is not the only problem associated with its use. Due to its chemical composition, freshly poured concrete changes the pH of water coming in contact with the surface to very alkaline values, requiring neutralization treatment before disposal. Conventional methods include the use of mineral acid or CO2 pumps, causing high costs to building companies. In this paper, we present a micromotor based remediation strategy, which consists of carbonate particles half-coated with citric acid. To achieve this half coverage spray coating is used for the first time to design Janus structures. The motors propel diffusiophoretically due to a self-generated gradient formed as the acid coverage dissolves. The locally lower pH contributes to the dissolution of the carbonate body. These motors have been employed to study neutralization of diluted concrete wash water (CWW) at microscopic scale and we achieve visualization of the pH changes occurring in the vicinity of motors using anthocyanine as pH indicator dye. The effect of citric acid-carbonates hybrid on neutralization of real CWW on macroscopic scale has also been studied. In addition, all employed chemicals are cheap, non-toxic and do not leave any solid residues behind.

Keywords: active matter; carbonate micromotors; pH neutralization; spray coating.