Proximity-Induced Odd-Frequency Superconductivity in a Topological Insulator

Phys Rev Lett. 2020 Jul 10;125(2):026802. doi: 10.1103/PhysRevLett.125.026802.

Abstract

At an interface between a topological insulator (TI) and a conventional superconductor (SC), superconductivity has been predicted to change dramatically and exhibit novel correlations. In particular, the induced superconductivity by an s-wave SC in a TI can develop an order parameter with a p-wave component. Here we present experimental evidence for an unexpected proximity-induced novel superconducting state in a thin layer of the prototypical TI, Bi_{2}Se_{3} proximity coupled to Nb. From depth-resolved magnetic field measurements below the superconducting transition temperature of Nb, we observe a local enhancement of the magnetic field in Bi_{2}Se_{3} that exceeds the externally applied field, thus supporting the existence of an intrinsic paramagnetic Meissner effect arising from an odd-frequency superconducting state. Our experimental results are complemented by theoretical calculations supporting the appearance of such a component at the interface which extends into the TI. This state is topologically distinct from the conventional Bardeen-Cooper-Schrieffer state it originates from. To the best of our knowledge, these findings present a first observation of bulk odd-frequency superconductivity in a TI. We thus reaffirm the potential of the TI-SC interface as a versatile platform to produce novel superconducting states.