Simple and Minimally Invasive SID Devices for Native Mass Spectrometry

Anal Chem. 2020 Aug 18;92(16):11195-11203. doi: 10.1021/acs.analchem.0c01657. Epub 2020 Aug 7.

Abstract

We describe a set of simple devices for surface-induced dissociation of proteins and protein complexes on three instrument platforms. All of the devices use a novel yet simple split lens geometry that is minimally invasive (requiring a few millimeters along the ion path axis) and is easier to operate than prior generations of devices. The split lens is designed to be small enough to replace the entrance lens of a Bruker FT-ICR collision cell, the dynamic range enhancement (DRE) lens of a Waters Q-IM-TOF, or the exit lens of a transfer multipole of a Thermo Scientific Extended Mass Range (EMR) Orbitrap. Despite the decrease in size and reduction in number of electrodes to 3 (from 10 to 12 in Gen 1 and ∼6 in Gen 2), we show sensitivity improvement in a variety of cases across all platforms while also maintaining SID capabilities across a wide mass and energy range. The coupling of SID, high resolution, and ion mobility is demonstrated for a variety of protein complexes of varying topologies.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • C-Reactive Protein / analysis*
  • Glutamate Dehydrogenase / analysis*
  • Mass Spectrometry / instrumentation
  • Mass Spectrometry / methods
  • Pyruvate Kinase / analysis*
  • Rabbits

Substances

  • C-Reactive Protein
  • Glutamate Dehydrogenase
  • Pyruvate Kinase