Sensitivity and breadth of detection of high-throughput sequencing for adventitious virus detection

NPJ Vaccines. 2020 Jul 17;5(1):61. doi: 10.1038/s41541-020-0207-4. eCollection 2020.

Abstract

High-throughput sequencing (HTS) is capable of broad virus detection encompassing both known and unknown adventitious viruses in a variety of sample matrices. We describe the development of a general-purpose HTS-based method for the detection of adventitious viruses. Performance was evaluated using 16 viruses equivalent to well-characterized National Institutes of Health (NIH) virus stocks and another six viruses of interest. A viral vaccine crude harvest and a cell substrate matrix were spiked with 22 viruses. Specificity was demonstrated for all 22 viruses at the species level. Our method was capable of detecting and identifying adventitious viruses spiked at 104 genome copies per milliliter in a viral vaccine crude harvest and 0.01 viral genome copies spiked per cell in a cell substrate matrix. Moreover, 9 of the 11 NIH model viruses with published in vivo data were detected by HTS with an equivalent or better sensitivity (in a viral vaccine crude harvest). Our general-purpose HTS method is unbiased and highly sensitive for the detection of adventitious viruses, and has a large breadth of detection, which may obviate the need to perform in vivo testing.

Keywords: Immunology; Medical research.