Variations in foliar carbon:nitrogen and nitrogen:phosphorus ratios under global change: a meta-analysis of experimental field studies

Sci Rep. 2020 Jul 22;10(1):12156. doi: 10.1038/s41598-020-68487-0.

Abstract

Foliar-level stoichiometry plays an important role in ecosystem elemental cycling. Shifts in foliar ratios of carbon to nitrogen (C:N) and nitrogen to phosphorus (N:P) in response to global change can therefore have a large impact upon ecosystem function. We conducted a meta-analysis with 2,236 paired observations from 123 published studies to investigate the responses of foliar C:N and N:P ratios to experimental global change treatments, i.e. warming, increased precipitation, drought, N addition and elevated carbon dioxide concentration (eCO2), in field conditions. Foliar C:N and N:P ratios were neither affected by warming nor by increased precipitation. Foliar C:N ratio increased with drought and eCO2, and decreased with N addition. Foliar N:P ratios declined with eCO2, and increased under drought and N addition. Our results suggested the responses of the C:N ratio to global change were mainly related to shifts in foliar [N], whereas changes in the N:P ratio were related to the responses of both [N] and [P]. Moreover, the response magnitude of foliar N:P ratio decreased with treatment duration under increased precipitation, N addition and eCO2. Our findings are important for our understanding of plant nutrient dynamic and modeling of nutrient biogeochemistry under global change.

Publication types

  • Research Support, Non-U.S. Gov't