MYB30 Orchestrates Systemic Reactive Oxygen Signaling and Plant Acclimation

Plant Physiol. 2020 Oct;184(2):666-675. doi: 10.1104/pp.20.00859. Epub 2020 Jul 22.

Abstract

Systemic acquired acclimation (SAA) is a key biological process essential for plant survival under conditions of abiotic stress. SAA was recently shown to be controlled by a rapid systemic signaling mechanism termed the reactive oxygen species (ROS) wave in Arabidopsis (Arabidopsis thaliana). MYB30 is a key transcriptional regulator mediating many different biological processes. MYB30 was found to act downstream of the ROS wave in systemic tissues of Arabidopsis in response to local high light (HL) stress treatment. However, the function of MYB30 in systemic signaling and SAA is unknown. To determine the relationship among MYB30, the ROS wave, and systemic acclimation in Arabidopsis, the SAA response to HL stress of myb30 mutants and wild-type plants was determined. Although myb30 plants were found to display enhanced rates of ROS wave propagation and their local tissues acclimated to the HL stress, they were deficient in SAA to HL stress. Compared to wild type, the systemic transcriptomic response of myb30 plants was also deficient, lacking in the expression of over 3,500 transcripts. A putative set of 150 core transcripts directly associated with MYB30 function during HL stress was determined. Our study identifies MYB30 as a key regulator that links systemic ROS signaling with systemic transcriptomic responses, SAA, and plant acclimation to HL stress. In addition, it demonstrates that plant acclimation and systemic ROS signaling are interlinked and that the lack of systemic acclimation drives systemic ROS signaling to occur at faster rates, suggesting a feedback mechanism (potentially involving MYB30) between these two processes.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Acclimatization*
  • Arabidopsis
  • Arabidopsis Proteins / metabolism*
  • Gene Expression Regulation, Plant*
  • Plants, Genetically Modified
  • Reactive Oxygen Species / metabolism*
  • Transcription Factors / metabolism*

Substances

  • Arabidopsis Proteins
  • MYB30 protein, Arabidopsis
  • Reactive Oxygen Species
  • Transcription Factors