Potential Anticancer Activity of Crude Ethanol, Ethyl Acetate, and Water Extracts of Ephedra foeminea on Human Osteosarcoma U2OS Cell Viability and Migration

Biomed Res Int. 2020 Jul 9:2020:3837693. doi: 10.1155/2020/3837693. eCollection 2020.

Abstract

Medicinal plants are potential sources for a wide range of complex compounds with probable anticancer activity. Ephedra foeminea Forssk. (E. foeminea), a medicinal plant found in the Eastern Mediterranean, has recently been gaining popularity as a cancer remedy; there is, however, a paucity of empirical evidence supporting this claim. In this study, the effect of E. foeminea ethyl acetate, ethanol, and water crude extracts on viability, migratory ability, and the steady-state mRNA levels of genes involved in these processes was, respectively, examined using MTT assay, wound healing assay, and reverse transcriptase PCR (RT-PCR). The study concludes that all extracts significantly reduce human osteosarcoma U2OS percentage viability in a dose- and time-dependent manner, with varying potencies. The least half-maximal inhibitory concentration (IC50) was observed in the water extract after 48 h incubation (30.761 ± 1.4 μg/mL) followed by the ethyl acetate extract after 72 h incubation (80.35 ± 1.233 μg/mL) and finally the ethanol extract after 48 h incubation (97.499 ± 1.188 μg/mL). Ethanol extract significantly reduced U2OS percentage wound closure. On the other hand, both ethanol and water extracts considerably reduced the steady-state mRNA expression of beta-catenin, promoting both cell proliferation and migration in osteosarcoma by regulating target genes. Additionally, E. foeminea showed no hemolytic activity. These effects suggest that E. foeminea decreases U2OS cell viability and migratory ability by modulating the expression of critical genes involved in regulating these processes and is likely cytocompatible with human erythrocytes.

MeSH terms

  • Acetates / chemistry*
  • Antineoplastic Agents / pharmacology*
  • Apoptosis / drug effects
  • Cell Line, Tumor
  • Cell Movement / drug effects*
  • Cell Proliferation / drug effects
  • Cell Shape / drug effects
  • Cell Survival / drug effects
  • Complex Mixtures
  • Dimethyl Sulfoxide / pharmacology
  • Doxorubicin / pharmacology
  • Ephedra / chemistry*
  • Ethanol / chemistry*
  • Gene Expression Regulation, Neoplastic / drug effects
  • Humans
  • Imidazoles / pharmacology
  • Inhibitory Concentration 50
  • Osteosarcoma / genetics
  • Osteosarcoma / pathology*
  • Piperazines / pharmacology
  • Plant Extracts / pharmacology*
  • RNA, Messenger / genetics
  • RNA, Messenger / metabolism
  • Water / chemistry*
  • Wound Healing / drug effects

Substances

  • Acetates
  • Antineoplastic Agents
  • Complex Mixtures
  • Imidazoles
  • Piperazines
  • Plant Extracts
  • RNA, Messenger
  • Water
  • Ethanol
  • nutlin 3
  • ethyl acetate
  • Doxorubicin
  • Dimethyl Sulfoxide