The Photoisomerization Pathway(s) of Push-Pull Phenylazoheteroarenes*

Chemistry. 2020 Nov 17;26(64):14724-14729. doi: 10.1002/chem.202002321. Epub 2020 Oct 14.

Abstract

Azoheteroarenes are the most recent derivatives targeted to further improve the properties of azo-based photoswitches. Their light-induced mechanism for trans-cis isomerization is assumed to be very similar to that of the parent azobenzene. As such, they inherited the controversy about the dominant isomerization pathway (rotation vs. inversion) depending on the excited state (nπ* vs. ππ*). Although the controversy seems settled in azobenzene, the extent to which the same conclusions apply to the more structurally diverse family of azoheteroarenes is unclear. Here, by means of non-adiabatic molecular dynamics, the photoisomerization mechanism of three prototypical phenyl-azoheteroarenes with increasing push-pull character is unraveled. The evolution of the rotational and inversion conical intersection energies, the preferred pathway, and the associated kinetics upon both nπ* and ππ* excitations can be linked directly with the push-pull substitution effects. Overall, the working conditions of this family of azo-dyes is clarified and a possibility to exploit push-pull substituents to tune their photoisomerization mechanism is identified, with potential impact on their quantum yield.

Keywords: azo-based photoswitches; azoheteroarene derivatives; conical intersection energies; push-pull character; trans-cis isomerization.