Janus Face All-cis 1,2,4,5-tetrakis(trifluoromethyl)- and All-cis 1,2,3,4,5,6-hexakis(trifluoromethyl)- Cyclohexanes

Angew Chem Int Ed Engl. 2020 Nov 2;59(45):19905-19909. doi: 10.1002/anie.202008662. Epub 2020 Sep 1.

Abstract

We report the synthesis of all-cis 1,2,4,5-tetrakis (trifluoromethyl)- and all-cis 1,2,3,4,5,6-hexakis (trifluoromethyl)- cyclohexanes by direct hydrogenation of precursor tetrakis- or hexakis- (trifluoromethyl)benzenes. The resultant cyclohexanes have a stereochemistry such that all the CF3 groups are on the same face of the cyclohexyl ring. All-cis 1,2,3,4,5,6-hexakis(trifluoromethyl)cyclohexane is the most sterically demanding of the all-cis hexakis substituted cyclohexanes prepared to date, with a barrier (ΔG) to ring inversion calculated at 27 kcal mol-1 . The X-ray structure of all-cis 1,2,3,4,5,6-hexakis(trifluoromethyl)cyclohexane displays a flattened chair conformation and the electrostatic profile of this compound reveals a large diffuse negative density on the fluorine face and a focused positive density on the hydrogen face. The electropositive hydrogen face can co-ordinate chloride (K≈103 ) and to a lesser extent fluoride and iodide ions. Dehydrofluorination promoted decomposition occurs with fluoride ion acting as a base.

Keywords: Janus face; aryl hydrogenation; cyclohexanes; triaxial orientations; trifluoromethyl groups.

Publication types

  • Research Support, Non-U.S. Gov't